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Abstract

Averaging predictions of a deep ensemble of networks is a popular and effective
method to improve predictive performance and calibration in various benchmarks
and Kaggle competitions. However, the runtime and training cost of deep ensembles
grow linearly with the size of the ensemble, making them unsuitable for many
applications. Averaging ensemble weights instead of predictions circumvents this
disadvantage during inference and is typically applied to intermediate checkpoints
of a model to reduce training cost. Albeit effective, only few works have improved
the understanding and the performance of weight averaging. Here, we revisit
this approach and show that a simple weight fusion (WF) strategy can lead to a
significantly improved predictive performance and calibration. We describe what
prerequisites the weights must meet in terms of weight space, functional space and
loss. Furthermore, we present a new test method (called oracle test) to measure
the functional space between weights. We demonstrate the versatility of our WF
strategy across state of the art segmentation CNNs and Transformers as well as real
world datasets such as BDD100K and Cityscapes. We compare WF with similar
approaches and show our superiority for in- and out-of-distribution data in terms
of predictive performance and calibration.
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1 Introduction

Real-world applications for which AI systems are in the safety-critical path, i.e., represent the basis
for the decision-making process, impose the highest demands on the AI modules composing these
systems. This refers to generalization capability, robustness, calibration, and for practical reasons,
computational efficiency. Deep ensembles can demonstrably contribute to an improvement in the
mentioned points (27; 16) except for efficiency. For a variety of applications, e.g., autonomous driving
and driving assistance systems, the efficiency consideration is not insignificant. Despite a steadily
increasing performance of information processing capabilities by both hardware and software, the
required computing power and runtime is a tremendous challenge for a large number of applications.
Fusion of weights instead of predictions or logits (20; 12) ultimately leads to a single set of weight
only, thus effectively addressing the limited computational budget requirement. The runtime of fused
weights is exactly the same as for a single network, with the additional benefit of encapsulating
diverse information from multiple networks.

Fort et al. (10) show that although the same Deep Neural Network (DNN) architecture was trained
with the same data and hyperparameters (only the initialization was different), the weak spots of the
resulting weights were different. The basic idea of averaging weights is to compensate the weak
spots of the individual weights. Averaging weights have been shot to lead to wider optima and better
generalization (18). So far, few works have proposed a better understanding and improvements of
this strategy. In addition, weight averaging has been mostly applied to classification tasks and the
breakthrough to real world tasks such as semantic segmentation has been largely missing. One reason
for the missing breakthrough may be that too little is known about the prerequisites of the weights to
be fused and how these prerequisites could be fulfilled.

Here we focus on the real world task of semantic segmentation and shed light on the prerequisites of
the weights to be fused. These preconditions include measurements in the weights space and function
space between the weights. We measure the weight space using the cosine similarity which should be
as high as possible for the weight fusion. At the same time, the weights in function space should be
as far away as possible, since the distance correlates with the diversity of the weak spots. The higher
the diversity, the higher the potential for weight fusion. For the measurement of the function space,
we introduce the so-called oracle testing, which is novel to the best of the authors’ knowledge. We
give insights and guidance to find the optimal compromise between weight space and function space
and describe two approaches to generating the weights to be fused. We apply weight fusion to three
SOTA architectures: DeepLabV3+ (4), HRNet (36), and Segmenter (33). We use the BDD100K (40),
Cityscapes (6) and ACDC (32) dataset for our experiments.

Our main contribution is to demonstrate a simple and effective method to fuse two or more sets of
DNN weights into a single one. (i) Our weight fusion method improves predictive performance and
calibration without impacting runtime cost. (ii) In extensive studies, we derive important properties
of DNN weights towards weight fusion. (iii) We introduce a new testing method that can measure
the functional space between weights, called oracle testing. (iv) We conduct extensive experiments
on multiple SoTA segmentation architectures (CNNs and Transformers) on multiple real world
datasets. (v) We show the superiority of our approach in a comparison with Stochastic Weight
Averaging (SWA) (18) and deep ensembles for in-distribution as well as for out-of-distribution data
(ACDC) (32).

2 Weight Fusion

Our approach of weight fusion is to generate at least two weights of the same DNN and to fuse them
with a weighted averaging into a single network. The goal of the weight fusion is to improve the
performance as well as the calibration of the DNN, while not impacting the runtime performance of
the DNN.

Formally, we define a training dataset D = {(xi,yi)}ni=1 with n samples and labels, where xi ∈
Rh×w×c are images with spatial resolution h × w and c color channels, and yi ∈ Rh×w×1 are
semantic segmentation labels (one label for each pixel in xi). We consider a neural network fθ(·)
with trainable parameters θ, that processes the input image xi and outputs a semantic map prediction
ŷi. Different random initializations of the parameters θ lead to different sets of weights after training.
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We denote with θ(τ) the parameters of a specific training process τ and with fθ(τ)(·) the corresponding
network.

The weight fusion represents a weighted averaging of the weight files (checkpoints) computed from
two different training runs. Formally we define the element-wise fusion of two sets of parameters as
follows: θ̄ = αθ(1) + βθ(2), where θ(1) and θ(2) are two sets of parameters for f , α and β are fusion
parameters with β = 1− α, and θ̄ is the set of fused weights.

2.1 Weight Properties for Improved Fusion

We hypothesize that weights θ(τ) must satisfy three properties to achieve optimal performance and
calibration improvements: (i) high cosine similarity to each other; (ii) a high value in oracle testing;
(iii) a low loss on the validation data. In the following we detail these properties.

(i) Cosine similarity. Cosine similarity is a measure of the similarity of two vectors. The cosine
of the angle between two vectors θ(1) and θ(2) (we flatten and concat the DNN parameters into a
single vector) is determined by: cos() = θ(1)·θ(2)

||θ(1)||·||θ(2)|| . An angle of 0 degrees corresponds to 1, i.e.,
the vectors are parallel, while an angle of 90 degrees results in 0, i.e., the vectors are perpendicular
to each other. Cosine similarity can be considered as a measurement in the weight space. DNNs
with different initializations can reach highly different local optima after training. Two networks can
have very similar predictions but low similarity, e.g., convolutional filters from the two networks are
permuted. Since the weight fusion is done element-wise it is essential for the two networks to not be
far away from each other as the final weights θ̄ risk being useless. We add the pytorch code snippets
for weight fusion and cosine similarity in Appendix C.

(ii) Oracle testing. In Oracle testing, an oracle merges all true positives of the DNN predictions into
a single output/prediction based on the ground truth. Then, the corresponding metric is calculated for
the merged prediction (e.g., mIoU). If the DNN predictions are very similar in their errors, the result
of the metric will be similar to the single predictions. In other words, the DNNs are close together
in the functional space. If the DNN predictions are diverse in terms of true positives, the oracle test
yields a high value. This means that the DNNs are far away in the function space. The quality of an
ensemble is a major advantage of DE (20) over other approaches (10). Higher diversity means that the
models are not stuck in the same local optimum and do not have the same weak spots. Quantitatively,
diversity is usually computed as dissimilarity between predictions from pairs of networks (1; 10; 30).
Oracle testing takes the ground truth into account and can be considered as a measurement in the
function space. The pytorch code snippet is listed below in 1.

1 for num in range(number_weights):
2 mask[num] = [outputs[num] == ground_truth]
3 outputs[0][mask[num]] = outputs[num][mask[num]]

Listing 1: Iterate over the number of weights to be used to calculate the oracle testing. Outputs is a
list containing the output of the models.

(iii) Validation loss. Empirically, we can show that the validation loss of the weights to be fused is
a relevant factor and should be close to its local minimum.

2.2 Generation of DNN Weights

To generate the weights, we distinguish the following two options, which we examine in more detail
in sec. 3.

1) The weights are generated by training from “scratch” (see §3.1). Here it is necessary to keep the
hyperparameters as well as the training data the same for each training run. To achieve a high oracle
test result, we show in our experiments with DeeplabV3+, HRNet, and the Segmenter that changing
the initialization seed is sufficient. This change does reduce cosine similarity, but only slightly. With
this approach we achieve a good compromise between cosine similarity and oracle testing for the
mentioned architectures.

2) The weights are derived from a finetuning where an already trained weight is used as starting
weight (see §3.2). The same data is used for the finetuning as for the prior training. The finetuning is
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performed with a cosine annealing learning rate schedule and can range from one to several cycles.
The cosine annealing learning rate schedule is defined as: lr = 1

2 ·
∑N

T=1 start_lr ·
(
1 + T

N ·π
)
. T is

the current iteration and N is the total amount of iterations, i.e., the multiplication of the number of
epochs by the number of iterations per epoch. The length of the cycles can range from one to several
epochs. The height of the start-learning rate for the cycles is crucial for the optimal property of the
weights for the fusion.

Further procedure. In 1) and 2) we use the presented properties (cosine similarity, oracle testing,
validation loss) of the weights to determine the suitable weights for the fusion. Then, we determine
the fusion parameter α using grid search in 0.05 steps on the validation data. Please note that training
the α parameter would not lead to any noteworthy improvement for the following two reasons: (i)
Finer resolution of the step size did not achieve any significant improvements ≤ +0.1 mIoU). (ii)
There is little reduction in computational effort when comparing the forward passes required for
the grid search with the forward plus backward passes required in a training process over multiple
epochs. Once several fused weights have been determined, one selects the fused weight with the best
predictive performance on the validation data as the final fused weight. This procedure is transferable
to new DNNs, datasets or tasks.

3 Experiments

The generation of the weights to be fused can be done in two ways. (i) By training from “scratch”
and (ii) finetuning. Therefore, we divide the experiments into two subsections. §3.1 describes weight
fusion based on weights obtained through multiple trainings from scratch. We show that our weight
fusion approach generalizes to multiple DNN architectures as well as datasets. We demonstrate
statistically significant results for three state-of-the-art architectures for semantic segmentation
DeeplabV3+ (4), HRNet (36) and Segmenter (33), based on real world datasets such as BDD100K
and Cityscapes. We consider the fusion properties for performing weight fusion, but not focusing on
analysing them in this subsection.

In §3.2, we use a final trained weight as a starting point for finetuning. We demonstrate detailed
analysis on cosine similarity, oracle testing and validation loss in the context of weight fusion. For
this and subsequent experiments, we limit ourselves to using DeeplabV3+ and BDD100K due to
limited compute budget.

To avoid negative influence of label errors in the ground truth data of the BDD100K dataset, we
adapted it manually. Furthermore, we split the available 7k images into 5k training data, 1k validation
data and 1k test data. The process for adaptation and splitting as well as a description of Cityscapes (6)
and ACDC (32) is described in more detail in Appendix D. For reproducibility of the experiments,
we list all the hyperparameters used for the trainings in Appendix C.

3.1 Fusion of Weights Trained from Scratch

For the generation of the weights we run several trainings from scratch. We change only the
initialization by specifying different random seeds, i.e., the architecture, the hyperparameters and
the training data remain exactly the same. These constraints lead to weight sets with a good
compromise between oracle testing and cosine similarity, which is needed for weight fusion. To
ensure a certain statistical significance, we performed four training runs each with DeepLabV3+,
HRNet and Segmenter on the BDD100K and Cityscapes datasets - a total of 20 runs.1 This serves
to reduce statistical fluctuations due to different sources of variation (7) and allowing us to reliably
attribute the performance improvement to weight fusion only. The resulting 4 weights per DNN
architecture and dataset allow for 6 different possible combinations when fusing 2 weights each
according to: n!

r!(n−r)! with n = 4 and r = 2.

Fig. 1 illustrates the behavior of the DeepLabV3+ architecture during weight fusion in terms of
predictive performance and calibration. Fig. 1(a) shows the mIoU for DeepLabV3+ on the validation
data from BDD100K and Cityscapes and on the test data from BDD100K. The mIoU values are
obtained by averaging the mIoU values over the 6 fused weights and are represented by a black line.

1Due to convergence difficulties with the Segmenter on the BDD100K data, we limit the evaluation of weight
fusion to Cityscapes.
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(a) (b)

Figure 1: DeepLabV3+ performance and calibration for 6 fused weights averaged for α from 0 to 1
in 0.05 steps. Please note that α/β = 0/1 corresponds to the single weights. (a) mIoU (b) ECE.

Table 1: Per class mIoU in % with the fusion parameters α/β = 0.1/0.9 for BDD100K and 0.15/0.85
for Cityscapes. The number between brackets shows the improvement (green) or deterioration (red)
compared to the single weights. Especially the classes with a small pixel density have improved the
most. Please note that the class train was not learned at all probably due to the limited images
containing train in the BDD100K training data.

Road Sidewalk Building Wall Fence Pole Traffic Light Traffic Sign Vegetation Terrain Sky Person Rider Car Truck Bus Train Motorcycle Bicycle Overall
2*BDD100K 94.71 65.40 85.77 29.29 51.14 52.91 58.33 56.29 86.49 51.17 95.32 65.73 46.36 90.70 58.88 81.41 0.00 55.87 57.30 62.27

(+0.14) (+0.51) (+0.25) (+0.02) (+0.14) (+2.86) (+4.67) (+3.46) (+0.12) (+0.56) (+0.17) (+2.10) (-1.33) (+0.39) (+1.73) (+2.30) (0.00) (+1.42) (+3.67) (+1.14)
2*Cityscapes 97.73 82.92 91.39 52.72 56.77 60.09 67.03 75.64 91.56 62.95 94.06 79.41 60.62 93.48 64.25 80.67 61.55 58.86 74.59 73.94

(+0.03) (-0.01) (+0.25) (+0.44) (-0.23) (+0.78) (+2.93) (+1.67) (+0.17) (+0.14) (+0.60) (+1.25) (+1.00) (+0.01) (-0.35) (+0.25) (+0.99) (+0.20) (+1.36) (+0.53)

The colored areas show the minimum and maximum mIoU values. The x-axis describes α and β, the
scalar values used as fusion parameter. The mIoU values are mirrored at the point α = 0.5, so that the
order of the weights can be neglected. For this reason, the x-axis that extends to 0.5 is complete. It is
illustrated that with the fusion parameters α/β = 0.1/0.9 and 0.15/0.85, the maximum mIoU value is
obtained over the 6 averaged mIoU values (see arrows in Fig. 1(a)). Table 1 shows the classes mIoU
for these fusion parameters. It can be seen that the classes with a low pixel density such as traffic
light, traffic sign, bicycle and person benefit the most from weight fusion.

How this behavior looks in semantic segmentation masks can be seen in Fig. 2(a). The images with
α = 0 and α = 1 correspond to the single predictions of weights 0 and 1, respectively. As alpha
approaches 0.5, fewer predictions are seen for the small classes such as traffic light, person,
etc., which explains the increased precision and reduced recall. Looking at the sidewalk in the
image with α = 0.15, we notice that it is most similar to ground truth. This shows that the fused
weight is not simply an alignment of the two weights 0 and 1, but represents a completely new
function. In other words, the weight fusion results in a new point in function space. More figures
confirming this behavior can be found in Appendix D.

Further analysis was done on the weight fusion by evaluating the calibration of the fused DNNs
based on the expected calibration error (ECE) (14; 26), see Fig. 1(b). Explanation of the ECE are in
Appendix H available. It can be seen that the lowest ECE is found at α = 0.1 where the ECE reaches
the lowest value for all three data splits, which means that a significantly better calibration is achieved
matching its counterpart maximum mIoU in Fig. 1(a). This indicates that the fusion does not only
improve the mIoU but also improves the calibration of the network. Further evaluations regarding
precision and recall as well as Kullback-Leibler (KL) divergence can be found in Appendix I.

Average results for DeepLabV3+, HRNet, and Segmenter are shown Table 2. The numbers in
parentheses indicate the improvement (green) and deterioration (red) from the single weight. Please
note that the numbers given are averages over 4 single weights and the resulting 6 fused weights.
Furthermore, for the sake of clarity, the same α parameter was used for all 6 fused weights, i.e.,
there was no individual selection of α, which would have led to even better results. For the results
on BDD100K, the α value that performed best on the validation data was used. Improvements in
performance (mIoU, precision, recall) and calibration (ECE, KL) can be seen across the board. This
demonstrates that the weight fusion is also transferable to different CNNs and also Transformers.
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(a) (b)

Figure 2: (a) Illustration of semantic segmentation for different alpha values using DeepLabV3+ and
an example image from BDD100K. α = 0.0 and 1.0 show the predictions of the single weights. α
= 0.15 shows the prediction of the fused weight where the pedestrian and the sidewalk are better
segmented. Please note that the color white represents void. (b) Visual comparison of the SWA,
weight fusion (WF) and single weight (SW) methods. WF is able to segment the rider correctly (see
ellipse).

Table 2: Results for three architectures.

DeepLabV3+ HRNet Segmenter

BDD100K Cityscapes BDD100K Cityscapes Cityscapes

Metrics alpha=0.1 alpha=0.1 alpha=0.45 alpha=0.1 alpha=0.05
Mean IoU (%) (↑) 62.24 (+1.10) 73.94 (+0.53) 55.57(+0.79) 69.65(+0.23) 70.88 (+0.34)
Precision (%) (↑) 75.28 (+2.92) 86.47 (+2.19) 72.05(+0.46) 83.68(+1.20) 84.14(+0.30)

Recall (%) (↑) 72.69 (-1.34) 82.66 (-1.40) 65.31(+1.56) 79.86(+0.63) 80.24(+0.22)
ECE (↓) 0.034 (-0.031) 0.041 (-0.071) 0.111(-0.002) 0.132(-0.007) 0.030(-0.001)

KL (↑) 1.919 (+0.312) 1.826 (+0.297) 0.858(-0.077) 0.952(+0.07) 2.445(+0.016)

3.2 Fusion of Finetuned Weights

Besides training from scratch (see §3.1), finetuning is a way to generate the weights for the WF.
Finetuning uses the same data as training from scratch. A fully trained weight is used for initialization
which we consider as starting weight. In our experiments the finetuning is performed with learning
rates between 0.002 and 0.02 in 0.002 steps and covers 10 epochs. The cosine annealing learning rate
schedule was used so that the 10 epochs correspond to one cycle (see Fig. 3(a)). For the fusion we
use the starting weight (at epoch 50) and one of the individual checkpoints of the respective epochs 1
to 10. For this experiment we use the DeepLabV3+ and the BDD100K validation data set. Fig. 4(a)
and (b) show the cosine similarity and the mIoU of the oracle testing, respectively, for the starting
weight and the weight of the 10th epoch. Fig. 4(c) shows the mIoU after fusion of the starting weight
with the checkpoint of the 10th epoch along the fusion parameter α for the corresponding learning
rates. The improvements of the mIoU compared to the starting weight, which is 58.61 %, are marked
with a diamond. From Fig. 4 we derive the following findings:

Finding 1: Cosine similarity and oracle testing are correlated.

The cosine similarity measures the distance of the weights in the weight space and the oracle testing
in the functional space. The closer the weights are in weight space, the closer they are in functional
space and vice versa. Using Fig. 4(a) and (b) it can be seen that the lower the learning rate the closer
they are together in weight space (cosine similarity approaches 1.0) and at the same time they are
close together in functional space (oracle testing approaches the single weight mIoU of 58.61 %).

Finding 2: Cosine similarity must not be too low.

A low cosine similarity is equivalent to a long distance in weight space. For a successful fusion the
weights must not be too far apart in weight space. Based on the mIoU of the fused weights (see
Fig. 4(a) and (c)) it can be seen that a cosine similarity smaller than about 0.925 at no α value results
in a higher mIoU than the starting value. This is the case for learning rates 0.02, 0.018 and 0.016.
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(a) (b)

Figure 3: Representation of the learning rate schedule. The blobs indicate the positions from which a
checkpoint was stored for our experiments. (a) Used in §3.2. (b) Used in §4

(a) (b) (c)

Figure 4: (a) Cosine similarity for the 10th epoch weight compared to the starting weight for the
corresponding learning rates. (b) Oracle testing for the 10th epoch weight and the starting weight for
the corresponding learning rates. (c) mIoU after fusion of the starting weight with the checkpoint
after the 10th epoch along the fusion parameter alpha for the corresponding learning rates.

Finding 3: Oracle test and cosine similarity should both be as high as possible.

Based on Finding 1, we know that these are negatively correlated with each other and thus a
compromise must be found. The learning rate 0.01 seems to be a good compromise, since it leads to
the highest fused mIoU in Fig. 4(c).

Two further findings regarding the weighting parameter and the validation loss have been derived and
are described in Appendix B. By and large the combination of a low validation loss with a high oracle
testing and a high cosine similarity are criteria for a successful weight fusion. This tradeoff is not
achievable for SWA because the weights are equal-weighted averaged, which in turn requires a very
high cosine similarity between the weights (cf. Finding 4 in B). WF can find a better compromise by
exploiting the α parameter. To apply this knowledge to new problems, we have summarized some
practical advice in Appendix E.

4 Results

For the results section, we restrict ourselves to the DeepLabV3+ architecture for our WF approach
as well as for the comparison methods. We train all methods on the BDD100K training dataset
and evaluate them using the test dataset from BDD100K and ACDC. The ACDC dataset is used
to evaluate the generalization ability of our WF in the presence of a distribution shift. The ACDC
dataset contains 19 classes as BDD100K and 4 test datasets of the domains fog, night, rain and snow.
First, in §4.1 we describe the methods used for the results and then in §4.2 we present mainly the
qualitative results in Table 3.
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4.1 WF and Comparison Methods

For the comparison we consider the SWA method as well as deep ensembles. For SWA we train the
DeepLabV3+ for 50 epochs and then finetune with cosine annealing for 10 cycles, where one cycle
corresponds to one epoch. After 50 epochs and at the end of each cycle, we save the weights for the
SWA baseline. This results in a total of 11 weights. We show the scheduling of the learning rate in
Fig. 3(b)2. The blobs in this figure indicate the weights used for the SWA baseline. We refer to the
single weight after 50 epochs as SW. To construct the SWA baseline, we perform an equally weighted
averaging over the 11 weights. We subsequently adapt that statistics of the BatchNorm layers by
updating the running means and variances over the training data (13; 18). However, this adaptation
had very little impact on performance and calibration in our evaluation.

For the comparison of our weight fusion (WF) to SWA, we choose 2 out of the 11 weights. We take
the weight after 50 epochs (SW) and one of the remaining 10 weights. We test all 10 combinations
and determine α by using grid search in 0.05 steps on the validation data. We list an analysis for
cosine similarity, oracle testing and validation loss for this in Appendix F. For the test data, the same
α parameter is used that was determined on the validation data.

We also compare against DE of varying sizes: two, three and four member ensembles denoted as
DE_2, DE_3 and DE_4, respectively. We use the 4 DeepLabV3+ models from § 3.1 trained from
scratch with different random initializations. The fusion is performed at softmax level, i.e., we
average the softmax predictions of the members of the ensemble.

For our comparison approaches (WF_2, WF_3, WF_4) to the deep ensembles, we use the same
weights. To determine the fusion parameter α for WF_2, we perform a grid search in 0.05 steps using
the training dataset and fuse the two weights accordingly. For WF_3 and WF_4, we need one and
two additional fusion parameters, respectively. Since the computational cost of grid search increases
exponentially with each additional fusion parameter, we selected the fusion parameters by a random
process. Fusion parameters were chosen randomly and the mIoU were determined on the training
data. This process was performed 50 times for WF_3 and WF_4, which kept 2 NVIDIA TITAN RTX
GPUs busy for 1 day. The fusion parameter that achieved the highest mIoU on the training data was
used to create the final weight for WF_3 and WF_4. The tables with the corresponding numerical
data for this process to better understand the selection of members for DE_2 and DE_3 can be found
in Appendix G. We also use the 4 single weights used by the DE_4 and WF_4 as baselines. We report
the mean of the mIoU, ECE and KL metrics for the predictions of the 4 single weights. We denote
this by “Mean SW”.

4.2 Qualitative and Quantitative Results

After explaining the methods used, we present the qualitative results on BDD100K and ACDC in
Table 3. For SWA and WF we report the difference in brackets (green or red) with respect to SW.
For DE_2 to WF_4 we show the difference in brackets (green or red) with respect to Mean SW. The
change of the reference method from SW to Mean SW seems to be a logical consequence, since the 4
weight files of Mean SW are partially represented in DE_2, DE_3, WF_2 and WF_3 and completely
in DE_4 and WF_4. Our WF method outperforms the single weight as well as our main competitor
SWA in mIoU, ECE and KL. Looking at the test data of ACDC, the difference is significant. For
example, in the domain snow WF boosts mIou with +4.28%, while SWA is worse by -0.34% mIoU
than the single weight. The comparison of the calibration metrics ECE and KL show that WF is
slightly better calibrated than SWA.

We conduct a visual comparison between the SW, SWA and WF predictions in Fig. 2(b). Our
approach predicts the rider class (see red ellipse) more accurately. Please note that in the ground
truth image the bike was incorrectly labeled as motorcyle, which is however correctly predicted by
all approaches.

The evaluation of the weight fusion methods (WF_2 to WF_4) reveals a clear improvement over the
baseline Mean SW except for the mIoU of the rain domain. Using more than two weights slightly
improves predictive performance and calibration almost consistently. The comparison with DE shows
a significantly better KL divergence and a partially better ECE. Only when comparing the mIoU of

2For the 10 cycles, we tested the learning rates 0.0025, 0.005, and 0.0075. With the learning rate 0.005 we
have achieved the best result for SWA and therefore we will focus on this learning rate in the following.
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Table 3: Results of weight fusion and comparable methods on BDD100K (in-distribution) and ACDC
(out-of-distribution). Please refer to §4.1 for a full explanation of the methods.

BDD100K ACDC

test data fog night rain snow
Methods mIoU (%) (↑) ECE (↓) KL (↑) mIoU (%) (↑) ECE (↓) KL (↑) mIoU (%) ECE (↓) KL (↑) mIoU (%) (↑) ECE (↓) KL (↑) mIoU (%) ECE (↓) KL (↑)

Single weight (SW) 60.81 0.246 0.4222 44.34 0.191 0.694 22.08 0.214 0.869 42.08 0.189 0.792 37.28 0.206 0.622
SWA 61.67 (+0.86) 0.111 (-0.135) 0.944 (+0.522) 44.57 (+0.23) 0.139 (-0.052) 0.823 (+0.129) 22.80 (+0.72) 0.169 (-0.045) 0.830 (-0.039) 42.25 (+0.17) 0.138 (-0.051) 0.864 (+0.072) 36.94 (-0.34) 0.17 (-0.036) 0.888 (+0.266)

WF (ours) 62.05 (+1.24) 0.080 (-0.166) 1.103 (+0.681) 47.38 (+3.04) 0.149 (-0.042) 1.135 (+0.441) 24.95 (+2.87) 0.159 (-0.055) 0.863 (-0.006) 44.60 (+2.52) 0.141 (-0.048) 1.051 (+0.259) 41.56 (+4.28) 0.162 (-0.044) 1.018 (+0.396)
Mean SW 61.14 0.194 0.720 45.48 0.198 0.729 23.32 0.231 0.646 41.99 0.198 0.837 38.45 0.214 0.656

DE_2 62.04 (+0.90) 0.149 (-0.045) 0.890 (+0.17) 42.29 (-3.19) 0.239 (+0.041) 0.688 (-0.041) 21.66 (-1.66) 0.269 (+0.038) 0.507 (-0.139) 38.80 (-3.19) 0.232 (+0.034) 0.868 (+0.031) 35.53 (-2.92) 0.249 (+0.035) 0.566 (-0.09)
DE_3 62.39 (+1.25) 0.144 (-0.05) 0.912 (+0.192) 46.16 (+0.68) 0.178 (-0.02) 0.689 (-0.04) 24.12 (+0.8) 0.210 (-0.021) 0.550 (-0.139) 42.68 (+0.69) 0.183 (-0.015) 0.798 (-0.039) 38.51 (+0.06) 0.202 (-0.012) 0.546 (-0.11)
DE_4 62.88 (+1.74) 0.159 (-0.035) 0.883 (+0.163) 47.35 (+1.87) 0.170 (-0.028) 0.807 (+0.078) 24.78 (+1.46) 0.192 (-0.039) 0.470 (-0.176) 43.40 (+1.41) 0.159 (-0.039) 0.736 (-0.101) 39.61 (+1.16) 0.187 (-0.027) 0.568 (-0.088)

WF_2 (ours) 62.17 (+1.03) 0.130 (-0.064) 1.106 (+0.386) 46.58 (+1.10) 0.185 (-0.013) 1.461 (+0.732) 23.78 (+0.46) 0.189 (-0.042) 1.534 (+0.888) 41.63 (-0.36) 0.189 (-0.009) 1.310 (+0.473) 38.84 (+0.39) 0.207 (-0.007) 1.299 (+0.643)
WF_3 (ours) 62.27 (+1.13) 0.131 (-0.063) 1.113 (+0.393) 46.73 (+1.25) 0.193 (-0.005) 1.647 (+0.918) 23.91 (+0.59) 0.192 (-0.022) 1.610 (+0.964) 41.47 (-0.52) 0.189 (-0.009) 1.340 (+0.503) 38.81 (+0.36) 0.210 (+0.004) 1.290 (+0.668)
WF_4 (ours) 62.32 (+1.18) 0.114 (-0.08) 1.130 (+0.41) 46.80 (+1.32) 0.164 (-0.027) 1.578 (+0.849) 24.14 (+0.82) 0.158 (-0.073) 1.514 (+0.868) 41.86 (-0.13) 0.177(-0.021) 1.378 (+0.541) 38.76 (+0.31) 0.182 (-0.032) 1.292 (+0.67)

DE variant with 4 members (DE_4), WF_2 to WF_4 fare worse. We emphasize that the runtime of
DE increases linearly with the number of members. Thus, DE_4 is 4× slower at inference than SWA
and WF.

All in all, weight fusion has advantages over its main competitor SWA in terms of performance and
calibration. Especially when it comes to generalization capability, WF excels. The comparison to DE
shows that weight fusion leads to a better calibration and can keep up with the performance of the
an ensemble of three networks, while taking only 1/3 of the runtime in this case. Additional visual
results and per class IoU analysis for the BDD test data are included in Appendix J.

5 Conclusion

We have presented a strategy to fuse two or more sets of weights into a single one. The weights can
be computed by training from scratch or by finetuning. We have derived from extensive experiments
that the similarity in weight space between the weights must be as large as possible and at the same
time the similarity in functional space must be as small as possible. To measure the functional space,
we introduced a new testing method called oralce testing. When computing the weights by finetuning,
the validation loss plays a decisive role, which should be as close as possible to the local minimum.
Based on extensive studies with SoTA architectures (CNNs and Transformers) we presented the
improvements in predictive performance and calibration. We have shown that equal-weighted fusion
as performed in SWA does not usually lead to the best results and can even be detrimental if the
cosine similarity is too low. We outperformed stochastic weight averaging (SWA) on the BDD100K
test data as well as under presence of a distribution shift on the ACDC data in performance and
calibration. Furthermore, comparison with deep ensembles shows that our weight fusion has slightly
better calibration and comparable performance to the deep ensemble with 3 members, albeit the latter
requires 3× the runtime.

6 Outlook

(i) Considering the beneficial effect of our weight fusion, the question arises about the potential of
more complex variants, such as layer-level fusion or nonlinear weight fusion. (ii) The question arises
whether with a new loss function in training the weights can be driven further apart in their functional
space while keeping the distance in weight space sufficiently small, which is expected to result in
further improvement in performance and calibration. (iii) Based on the results in Fig. 5 subplot 1
where the fused mIoU did not occur at the end of the cycle but during the cycle, the question arises
whether SWA and its variants should better average the weights in the middle of the cycle than at the
end. (iv) Furthermore, we leave the applicability of weight fusion to other autonomous driving tasks
like object detection or point cloud segmentation to future work.
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A Related Work

Ensemble strategies. Ensembles are a simple approach for generating robust predictions by av-
eraging decisions from multiple networks trained with different random initialization seeds. Deep
Ensemble (DE) (20) is a highly effective method for achieving both high accuracy and calibration
scores (27; 16; 10). However, its computational costs for training and inferences make them pro-
hibitive for real-time predictions. These limitations have been addressed by several approaches that
generate an ensemble from a single training run by collecting intermediate checkpoints (17; 13),
imbuing a network with multiple prediction heads (21) or multiple low-rank weights (37), using
multiple Dropout masks during inference (12), multiple test-time augmentations of an input image (2).
These approaches, while faster to train, still have slow runtime due to the multiple forward passes
that are performed. In practical settings, fast predictions are key and our approach does not bring any
extra compute cost at test-time.

Fusing strategies. Deep Ensemble (20) can naturally fuse predictions from the individual net-
works by averaging predictions. In the quest of mimicking the robustness of ensembles and of flat
minima (8) that generalize better, some approaches average network weights instead (34; 18; 3; 15).
Most approaches propose simple averaging of the network weights. Here we show that simple
averaging (18) is not an optimal strategy and that the way in which model weights are fused can
greatly impact the final performance of a model.

Calibration. Calibration is another key requirement for models deployed in real-world settings
as it facilitates thresholding of confidence scores from network predictions. However, DNNs tend
to be overconfident even when they are incorrect (14). This limitation can be addressed by a post-
training operation that learns to map confidence scores to probabilities, e.g., using Platt scaling (29),
temperature scaling (14). However these strategies do not generalize well under distribution shift (27)
as the scaling coefficient can overfit to the in-distribution data. Alternative approaches propose
strategies for improving the calibration of the DNNs during training. Data augmentation strategies
based on mixing (42; 41) have been shown to improve calibration (35; 11) along with crafted loss
functions (24). WF also aims for improved calibration but does not require crafted loss functions or
augmentation strategies and generalizes across network architectures.

Semantic segmentation. Semantic segmentation is a key visual perception task, in particular for
autonomous driving (6; 40; 25) where it enables an understanding of the environment surrounding
the vehicle. The most effective semantic segmentation architectures are currently based on fully
convolutional DNNs (23) with encoder-decoder structures. In the last few years tremendous amount
of architectures for semantic segmentation have been proposed aiming for fine high-resolution
predictions (31; 4; 39; 36; 5), multi-scale processing (44; 22) or computational efficiency (28;
43). Furthermore, the recent progress in Vision Transformers (9) has facilitated the rise of a new
generation of transformer-based decoders for semantic segmentation (33; 38; 45). We consider here
prominent convolutional and transformer architectures (DeepLabV3+(4), HRNet(36), Segmenter(33))
to illustrate the generalization of our WF strategy.

B Two Further Findings

Finding 4: If the weights to be fused have a very high similarity in weight space, the weighting
parameter (alpha) plays a minor role in the fusion.

θ̄ = αθ(1) + (1− α)θ(2), so if θ(1) ∼ θ(2), then θ̄ ∼ θ(1) ∼ θ(2), thus α plays a minor role. A high
cosine similarity leads to a flat course of the mIoU along the α parameters (see red and orange curve
in Fig. 4(c)). Equally weighted fusion is only beneficial when cosine similarity is very high.

The next finding refers to Fig. 5, which is used to analyze the requirements for the weights along the
10-epoch finetuning. For the sake of clarity, we restrict ourselves to learning rates 0.004 to 0.01. The
evaluations include the mIoU of the fused weight, the mIoU of the single weight of each epoch, the
validation loss, the oracle testing, and the cosine similarity. Please note that for the three subplots
fused weight, oracle testing and cosine similarity, the starting weight and the weight of the respective
epoch was used. The parameter α used for the weight fusion was determined for each epoch using
grid search in 0.05 steps. Based on the first subplot in Fig. 5 it can be seen that the fusion of the
starting weight with the weight after epoch 3, 5, 6 and 7 respectively reaches the highest mIoU value.
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Figure 5: Results for the 10 epochs finetuning with the cyclic learning rate schedule. The first and
second subplots show the mIoU for the fused and finetuned weights, respectively. The third subplot
shows the validation loss for the finetuned weights. The fourth and fifth subplots show the oracle
testing and cosine similarity results, respectively, using the starting weight and the finetuned weights.

For easier comparison of the subplots for these epochs, they are marked with a diamond marker.
From Fig. 5 we derive the following finding:

Finding 5: A successful weight fusion is strongly correlated with the validation loss of the
second weight in this finetuning setup.

In the subplot of the validation loss, we observe that the diamond markers are mostly in the minimum.
This is not completely true for the learning rate 0.008, because here the minimum is one epoch further
at epoch 7. However, when checking the oracle test, there is a reduction of the mIoU from epoch 6 to
7. We see this as confirmation of another claim that a high mIoU in oracle testing is important as
well.

C WF and Cosine Similarity Pytorch Code Snippet

The code for WF for two weights is listetd in 2 and the code for calculating cosine similarity for
two weights is listed in 3. For more details, please refer to the captions and comments of the code
snippets.

1 for k in checkpoint[0][’state_dict’].keys():
2 checkpoint_fused[’state_dict’][k] = \
3 alpha * checkpoint[0][’state_dict’][k] + \
4 beta * checkpoint[1][’state_dict’][k]

Listing 2: We iterate over the layers and calculate the fused weight (checkpoint_fused).
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1 cos = nn.CosineSimilarity(dim=1, eps=1e−6)
2 # iterate over the layers and concatenate the parameters
3 for k in checkpoint[0][’state_dict’].keys():
4 # remove num_batches_tracked in bn layers
5 if len(list(checkpoint[0][’state_dict’][k].shape)) == 0:
6 continue
7 # flatten the parameters before concatenation
8 vector_key1 = checkpoint[0][’state_dict’][k].view(1, −1)
9 vector_key2 = checkpoint[1][’state_dict’][k].view(1, −1)

10 vector1 = torch.cat((vector_key1, vector1), 1)
11 vector2 = torch.cat((vector_key2, vector2), 1)
12 cos_sim = cos(vector1, vector2)

Listing 3: We iterate over the layers and flatten the parameters of each layer. We then concatenate the
parameters before calculating the cosine similarity.

D Datasets

In the following, we describe the datasets used and specifically address the adaptations made on the
BDD100K dataset. All three datasets contain the same 19 classes and follow the Cityscapes label
protocol, allowing for easy transferability of models.

BDD100K. BDD100K (40) is a large-scale and diverse dataset for autonomous driving. It contains
diverse data related to weather conditions, environments and geographic. The size of the semantic
segmentation part is 10k images, which is divided into 6k training, 1k validation and 3k test data
with an resolution of 720x1280 pixels. Since the availability of the test dataset was not given at the
time of the conducted experiments, we limited ourselves to the remaining 7k images. We split the
7k images again into 5k training, 1k validation and 1k test data. The 1k test data set corresponds
to the originally designed 1k validation data set. The splitting into the 1k validation set was done
randomly. Due to numerous errors in the ground truth annotations and the resulting negative impact
on result interpretations, we adapted the ground truth data. Obviously there was a systematic error in
the BDD100K labeling tool, so that correctly segmented objects were assigned the wrong label. In
these cases we changed the objects to void, which has the effect that these objects are ignored during
training and evaluation. We made such a change in about every 5th image.

Cityscapes. As BDD100K, the Cityscapes dataset (6) contains scenes from street traffic. The images
were recorded in 50 cities of the countries Germany, France, Austria and Switzerland and have a
resolution of 1024x2048 pixels. The 5000 image dataset is divided into 2975 training, 500 validation
and 1525 test images. The label accuracy is very precise, which has made the dataset one of the most
popular datasets for semantic segmentation, among others. Due to the limited accessibility of the test
data set, we focus our experiments and evaluations on the validation data.

ACDC. ACDC (32) is a dataset for training and testing semantic segmentation models on road scenes
with adverse visual conditions. The images were divided into the domains fog, night, rain, and snow
and have a resolution of 1920x1080 pixe;s. Due to the easier accessibility, we use only the training
dataset of these domains, each containing 400 images, to test the generalization ability of WF.

C Implementation details

In this section we share information about the details on the used DNN architectures and the used
hyperparameters for the trainings.

For DeepLabV3+ (4), we used the Resnet101 backbone pretrained on ImageNet and an out-stride
of 16. As for the Segmenter (33), we used a Vision Transformer (ViT) (9) backbone pretrained on
ADE20K (46) with patch size of 16 and token size of 768. For HRNet (36), we did not use the OCR
module to upscale HRNet predictions for the sake of simplicity. Instead, we used simple bilinear
interpolation. This is the reason why HRNet performs slightly worse than DeepLabV3+, even though
HRNet usually performs better than DeepLabV3+, cf. Cityscapes benchmark.

We provide the common hyper-parameters used for all three DNN architectures in Table 4.
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Hyper-parameter Value
learning rate 0.01

learning rate schedule polynomial

loss cross-entropy

optimizer SGD

weight decay 0.0005

momentum 0.9

Table 4: Common hyper-parameter configuration used across experiments.

Regarding the batch-size, this was chosen so that it could be done with one Quadro RTX 8000 that
has 48 GB of GPU memory. Furthermore, we performed class weighting for cross-entropy to assign
a larger weight to classes with a low pixel count. To reduce the complexity of our experiments, we
did not use data augmentation in the training.

The following mean and standard deviation were used for BDD100K and Cityscapes:

Cityscapes: mean=(0.28689554, 0.32513303, 0.28389177), std=(0.18696375, 0.19017339,
0.18720214)

BDD: mean=(0.3702, 0.4145, 0.4245), std=(0.057, 0.0658, 0.0755)

For the sake of reproducablity we share the github repositories where we took the code from:

• DeepLabV3+: https://github.com/jfzhang95/pytorch-deeplab-xception

• HRNet: https://github.com/HRNet/HRNet-Semantic-Segmentation

• Segmenter: https://github.com/rstrudel/segmenter

D Additional Qualitative Results for WF

In Figure 6 and 7 we show more visual results for WF with different fusion parameters alpha.
All images are from the BDD100K test dataset and the segmentation masks were generated using
DeepLabV3+. Alpha=0.0 and alpha=1.0 refers to the single weights and serves as baselines to
alpha=0.15, which according to Figure 1 in the main paper led to the best results. We want to
highlight in Figure 6 the class fence on the right side of the image. The segmentation of fence is
different from both baselines, making it clear that the fused weight is a new function and not just a
visual combination of the segmentation masks of the baselines. In Figure 7, we want to focus on the
class person centered in the image. Only the fused weight with alpha=0.15 is able to segment person
completely.

E Practical Advice when Applying WF to new Problems.

The goal is to find a good compromise between cosine similarity and oracle testing. This trade-off is
to achieve the highest possible value for the oracle tests while keeping the cosine similarity not too
low (in most of our experiments, a value higher than 0.93 has proven to be effective). How can we
exploit this knowledge to generate appropriate weights for fusion?

Broadly speaking: The higher the variance in training/finetuning the higher the value in oracle testing.
At the same time, this reduces the cosine similarity. From this we conclude that the variance is the
parameter for the right compromise. There are many ways to vary the variance in training/finetuning,
e.g. by using a different learning rate, optimizer or initialization seed. By using two different learning
rates for training from the scratch, the variance and thus the oracle testing can be increased. If one
wants to reduce the variance, it is advisable to set all hyperparameters to the same value and only
change the initialization seed. In our experiments it has been shown that the learning rate is a good
parameter to adjust the variance during training and finetuning. Specifically, finetuning provides
an easier and less computationally expensive way to generate the desired weights for fusion. Our
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Figure 6: Visual Semantic Segmentation results for DeepLabV3+ on BDD100K data. Please note
that the color white refers to void.

Figure 7: Visual Semantic Segmentation results for DeepLabV3+ on BDD100K data. Please note
that the color white refers to void.

results in terms of predictive performance and calibration show no disadvantages to training from the
scratch.
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How can grid search for alpha be made more computationally efficient? After the appropriate weights
have been generated, a grid search is applied to find the appropriate alpha parameter. The step size of
0.05 has proven to be useful, but this does not have to be run stupendously for all possibilities, since
the changes of the mIoU are usually linear. I.e. if the alpha value of 0.05 as well as 0.1 provides an
improvement, but 0.15 does not, the grid search can continue with alpha = 0.95. If no improvement
can be measured at 0.95, the grid search can already be terminated. In this example, the best fused
weight can be achieved with alpha 0.1.

F Analysis of WF on SWA-Setting

Figure 8 shows the analysis of the WF on the BDD100K validation data which we use as a comparison
to SWA, cf. 4.1.

The structure of the plot is the same as in Figure 5 from the main paper. The first subplot shows
the mIoU after weight fusion of the starting weight with the weight of the respective epoch. The
mIoU of the starting weight is called the baseline and the mIoU of SWA is also plotted for reference.
The second and third subplots show the mIoU and validation loss of the weight of the corresponding
epoch, respectively. Subplot 4 and 5 show the result of oracle testing and cosine similarity between
the start weight and the weights of the corresponding epoch. The diamond marker indicates the
highest mIoU of the fused weight, which is at epoch 6. At this point, the optimal compromise between
low validation loss, high oracle testing and high cosine similarity is reached.

Figure 8: Analysis of the WF on the BDD100K validation data. The first and second subplots show
the mIoU for the fused and finetuned weights, respectively. The third subplot shows the validation
loss for the finetuned weights. The fourth and fifth subplots show the oracle testing and cosine
similarity results, respectively, using the starting point and the weight of the corresponding epoch.

G Selection of the Weights for DE_2, DE_3, DE_4, and WF_2, WF_3, WF_4

The four weight files used in DE_4 and WF_4 were taken from subsection 4.1, in which DeepLabV3+
was trained four times from the scratch on BDD100K. The selection of weights for DE_2, DE_3
and WF_2, WF_3 was determined by evaluating the mIoU on the training data. The combination of
weights (checkpoint IDs 1 to 4) that achieved the highest mIoU on the training data was selected for
evaluation on the test data. The bold values in tables 5 and 6 show the checkpoint IDs that reached
the highest mIoU. The weights used for the deep ensemble and the weight fusion differ accordingly.
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Table 5: Specification of the mIoU (%) for the selection process of the weights for DE_2 and WF_2.
The checkpoint IDs (1 to 4) that resulted in the highest mIoU on the training data (marked in bold)
were used for the evaluation of the test data.

DE_2 WF_2

Checkpoint IDs Train data Test data Train data Test data

1, 2 84,12 62.11 86.48 61.93
1, 3 84.06 62.25 86.62 62.38
1, 4 83.61 62.45 86.27 62.31
2, 3 84.18 62.04 86.64 62.18
2, 4 83.70 62.13 86.50 61.89
3, 4 83.65 62.44 86.68 62.17

Table 6: Specification of the mIoU (%) for the selection process of the weights for DE_3 and WF_3.
The checkpoint IDs (1 to 4) that resulted in the highest mIoU on the training data (marked in bold)
were used for the evaluation of the test data.

DE_3 WF_3

Checkpoint IDs Train data Test data Train data Test data

1, 2, 3 84.29 62.39 86.71 62.36
1, 2, 4 83.99 62.52 86.57 61.96
1, 3, 4 83.94 62.65 86.74 62.25
2, 3, 4 83.99 62.51 86.74 62.27

For the determination of the fusion parameter alpha for WF, a grid search in 0.05 steps was performed
for each combination. Please note that there is no particular reason to select the train instead of the
validation data for this selection process.

H Expected Calibration Error (ECE)

Evaluation of DNN calibration is done using both expected calibration error (ECE) and maximum
calibration error (MCE) (14; 26).

To evaluate the calibration metrics the segmentation predictions should be first sorted into fixed-sized
bins βi, i = 1, . . . , B according to their confidence. Afterwards, for each bin βi, accuracy (acc) and
confidence (conf) are computed as:

acci =
TPi

|βi|
, confi =

1

|βi|

|βi|∑
j=1

ĉi (1)

where |βi| indicates the number of examples in βi and ĉi is the respective confidence, i.e., softmax
score. TPi denotes the number of correctly classified in βi. The ECE and MCE are then calculated
accordingly:

ECE =
1

B

B∑
i=1

|acci − confi|, MCE = max|acci − confi|. (2)

I Precision, Recall, KL

Fig. 9(a) shows the precision and recall for DeepLabV3+ on the BDD100K data. Interestingly,
precision increases significantly along the x-axis, while recall decreases sharply.

Furthermore, the ability to separate between correct and incorrect classifications is an important
factor in our tests. For that, we look into calculating the network’s ability in being able to differentiate
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(a) (b)

Figure 9: DeepLabV3+ performance (precision, recall) and calibration (KL) for 6 fused weights
averaged for alpha from 0 to 1 in 0.05 steps. Please note that alpha/beta = 0/1 corresponds to the
single weights. (a) precision and recall (b) KL.

between correct and incorrect labels (distinctive distributions) in 9(b). Accordingly, the distributions
of both correct and incorrect predictions are plotted with respect to confidence score, then both
distributions are compared using the Kullback-Leibler (KL) divergence metric (19) as follows:

DKL(P ∥ Q) = −
∑
x∈X

P (x)log
(
P (x)

Q(x)

)
, (3)

where P and Q represent the correct and incorrect distributions respectively, and X represents the
confidence score space.

High KL value indicates dissimilar distinctive distributions reflecting the efficiency of the DNN
and vice versa for low KL divergence value, whilst the value 0 indicates the inability of using the
confidence score in distinguishing between correct and incorrect predictions. Figure 9(b) shows that
the fusion also improves the KL divergence achieving higher value than the initial weights.

J Additional Quantitative and Qualitative Results for WF and SWA
Comparison

Table 7 shows the per class IoU for the comparison between the single weight, SWA and WF. On the
BDD100K validation data, SWA is 0.77 % mIoU better than the single weight. WF exceeds this with
an improvement of 1.44 % mIoU. On the test data, the picture is similar. Again, WF outperforms the
single weight and SWA. It should be noted again that for WF the fusion parameter alpha has been
determined on the validation data using grid search in 0.05 steps. It shows that the increased mIoU
by WF generalizes to the test data as well. Looking at the per class IoU it is noticeable that mainly
classes with a smaller pixel density such as traffic light, traffic sign, pole etc. benefit the most from
the fusion. This applies to WF and SWA.

Figure 10 and 11 show further visual comparisons of SW, SWA, and WF. The areas to be pointed out
are marked with a red ellipse. In figure 10 we see false positive segmentation from SW and SWA for
the person class. In figure 11, on the other hand, the person class is segmented more completely by
WF.
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Figure 10: Comparison of semantic segmentation masks between SW, SWA and WF. The areas to be
pointed out are marked with a red ellipse.

Figure 11: Comparison of semantic segmentation masks between SW, SWA and WF. The areas to be
pointed out are marked with a red ellipse.

Table 7: Per class mIoU in (%) for DeepLabV3+ and the BDD100K data.

BDD100K validation data BDD100K test data
Classes Single weight SWA WF (ours) Single weight SWA WF (ours)

Road 94.48 94.53(+0.05) 94.79(+0.26) 94.53 94.53(0.00) 94.67(+0.14)
Sidewalk 63.48 63.25(-0.23) 64.66(+1.18) 64.57 64.66(+0.09) 65.59(+1.02)
Building 83.08 83.29(+0.21) 83.40(+0.32) 85.42 85.72(+0.3) 85.69(+0.27)

Wall 37.50 42.66(+5.16) 43.33(+5.83) 26.99 31.00(+4.01) 29.13(+2.14)
Fence 46.85 46.92(+0.07) 46.58(-0.27) 50.24 50.95(+0.71) 51.21(+0.97)

Pole 47.00 50.00(+3.00) 50.25(+3.25) 49.71 52.68(+2.97) 52.91(+3.20)
Traffic Light 49.02 53.42(+4.40) 53.55(+4.53) 53.04 57.16(+4.12) 58.14(+5.10)
Traffic Sign 58.78 61.54(+2.76) 62.66(+3.88) 53.16 55.65(+2.49) 56.39(+3.23)
Vegetation 85.11 85.48(+0.37) 85.44(+0.33) 86.32 86.29(-0.03) 86.43(+0.11)

Terrain 45.76 46.94 (+1.18) 45.87(+0.11) 50.42 50.98(+0.56) 51.00(+0.58)
Sky 95.64 95.72(+0.08) 95.62(-0.02) 95.20 95.09(-0.11) 95.20(0.00)

Person 62.70 63.42(+0.72) 65.25(+2.55) 63.80 64.67(+0.87) 65.14(+1.34)
Rider 45.93 42.22(-3.71) 48.09(+2.16) 50.07 51.06(+0.99) 52.48(+2.41)

Car 88.10 88.63(+0.53) 88.73(+0.63) 90.37 90.44(+0.07) 90.79(+0.42)
Truck 59.18 62.35(+3.17) 61.56(+2.38) 57.49 59.57(+2.08) 60.55(+3.06)

Bus 73.36 74.66(+1.30) 70.47(-2.89) 78.93 78.90(-0.03) 80.66(+1.73)
Train 0 0 0 0 0 0

Motorcycle 35.09 32.14(-2.95) 36.25(+1.16) 55.46 52.70(-2.76) 54.24(-1.22)
Bicycle 42.60 41.78(-0.82) 44.52(+1.92) 49.75 48.68(-1.07) 48.78(-0.97)
Overall 58.61 59.38(+0.77) 60.05(+1.44) 60.81 61.67(+0.86) 62.05(+1.24)

20


	Introduction
	Weight Fusion
	Weight Properties for Improved Fusion
	Generation of DNN Weights

	Experiments
	Fusion of Weights Trained from Scratch
	Fusion of Finetuned Weights

	Results
	WF and Comparison Methods
	Qualitative and Quantitative Results

	Conclusion
	Outlook
	Related Work
	Two Further Findings
	WF and Cosine Similarity Pytorch Code Snippet
	Datasets
	Implementation details
	Additional Qualitative Results for WF
	Practical Advice when Applying WF to new Problems.
	Analysis of WF on SWA-Setting
	Selection of the Weights for DE_2, DE_3, DE_4, and WF_2, WF_3, WF_4
	Expected Calibration Error (ECE)
	Precision, Recall, KL
	Additional Quantitative and Qualitative Results for WF and SWA Comparison

